Bruno Bueno Ipaves Nascimento
- juan.gomez@ufabc.edu.br
- Nanociência e Nanotecnologia
- Bolsista de Doutorado | FAPESP - Vigência: 01/10/2023 -30/09/2027
Graduado em Física pela Universidade Nacional Mayor de San Marcos, Lima, Peru, com especialização em Física do Estado Sólido. Mestrado em Ciência e Engenharia de Materiais pela Universidade Federal do ABC. Atualmente, estou cursando o doutorado em Nanociências e Materiais Avançados na Universidade Federal do ABC, em São Paulo, Brasil.Minhas áreas de interesse incluem:Nanomagnetismo: Estudo das propriedades superparamagnéticas de nanopartículas de domínio único por meio de simulação de Monte Carlo.Teoria Funcional da Densidade: Investigação de novos materiais para aplicação como material anódico em baterias de íon de lítio. Estudo das propriedades mecânicas e eletrônicas de novos allotropos de grafeno e nanotubos.Dinâmica Molecular: Análise das propriedades mecânicas de novos nanotubos de carbono.
2024
Quispe, Juan Gomez; Ipaves, Bruno; Galvao, Douglas Soares; da Silva Autreto, Pedro Alves
TPDH-Graphene as a New Anodic Material for Lithium Ion Battery: DFT-Based Investigations Journal Article
Em: ACS Omega, vol. 9, iss. 37, pp. 39195–39201, 2024.
Resumo | Links | BibTeX | Tags:
@article{nokey,
title = {TPDH-Graphene as a New Anodic Material for Lithium Ion Battery: DFT-Based Investigations},
author = {Juan Gomez Quispe and Bruno Ipaves and Douglas Soares Galvao and Pedro Alves da Silva Autreto
},
url = {https://pubs.acs.org/doi/full/10.1021/acsomega.4c06252},
doi = {4c06252},
year = {2024},
date = {2024-09-03},
urldate = {2024-09-03},
journal = {ACS Omega},
volume = {9},
issue = {37},
pages = {39195–39201},
abstract = {The potential of tetra-penta-deca-hexagonal graphene (TPDH-gr), a recently proposed 2D carbon allotrope as an anodic material in lithium ion batteries (LIBs), was investigated through density functional theory calculations. The results indicate that Li-atom adsorption is moderate (around 0.70 eV), allowing for easy desorption. Moreover, energy barriers (0.08–0.20 eV), diffusion coefficient (>6 × 10–6 cm2/s), and open circuit voltage (0.29 V) calculations show rapid Li atom diffusion on the TPDH-gr surface, stable intercalation of lithium atoms, and good performance during the charge and discharge cycles of the LIB. These findings, combined with the intrinsic metallic nature of TPDH-gr, indicate that this new 2D carbon allotrope is a promising candidate for use as an anodic LIB material.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Quispe, Juan Gomez; Galvao, Douglas Soares; da Silva Autreto, Pedro Alves
Exploring the Electronic and Mechanical Properties of TPDH-Nanotube: Insights from Ab initio and Classical Molecular Dynamics Simulations Journal Article
Em: ACSOmega, pp. 15, 2024.
Resumo | Links | BibTeX | Tags:
@article{nokey,
title = {Exploring the Electronic and Mechanical Properties of TPDH-Nanotube: Insights from Ab initio and Classical Molecular Dynamics Simulations },
author = {Juan Gomez Quispe and Douglas Soares Galvao and Pedro Alves da Silva Autreto },
url = {https://ui.adsabs.harvard.edu/abs/2024arXiv240619536G/abstract},
doi = {2406.19536},
year = {2024},
date = {2024-06-27},
journal = {ACSOmega},
pages = {15},
abstract = {Tetra-Penta-Deca-Hexa-graphene (TPDH) is a new 2D carbon allotrope with attractive electronic and mechanical properties. It is composed of tetragonal, pentagonal, and hexagonal carbon rings. When TPDH-graphene is sliced into quasi-one-dimensional (1D) structures like nanoribbons, it exhibits a range of behaviors, from semi-metallic to semiconducting. An alternative approach to achieving these desirable electronic (electronic confinement and/or non-zero electronic band gap) properties is the creation of nanotubes (TPDH-NT). In the present work, we carried out a comprehensive study of TPDH-NTs combining Density Functional Theory (DFT) and Classical Reactive Molecular Dynamics (MD). Our results show structural stability and a chiral dependence on mechanical properties. Similarly to standard carbon nanotubes, TPDH-NT can be metallic or semiconductor. MD results show Young's modulus values exceeding 700 GPa, except for nanotubes with very small radii. However, certain chiral TPDH-NTs (n,m) display values both below and above 700 GPa, particularly for those with small radii. The analyses of the angle and C-C bond length distributions underscore the significance of the tetragonal and pentagonal rings in determining the mechanical response of TPDH-NTs (n,0) and (0,n), respectively. },
keywords = {},
pubstate = {published},
tppubtype = {article}
}